Higher analogues of Stickelberger's theorem
Authors:
- Grzegorz Marian Banaszak
Abstract
Let l be an odd prime number, F denote any totally real number field and E/F be an Abelian CM extension of F of conductor f. In this paper we prove that for every n odd and almost all prime numbers l we have S
n
(E/F, l) ⊂ Ann
ℤl[G(E/F ]
H
2
(O
E
[1/l]; ℤ
l
(n + 1)) where S
n
(E/F, l) is the Stickelberger ideal (Ann. of Math. 135 (1992) 325-360; J. Coates, p-adic L-functions and Iwasawa's theory, in: Algebraic Number Fields by A. Fröhlich, Academic Press, London, 1977). In addition if we assume the Quillen-Lichtenbaum conjecture then S
n
(E/F, l) ⊂ Ann
ℤl[G(E/F)]
K
2n
(O
E
)
l
. © 2003 Académie des sciences. Published by Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
- Record ID
- UAM14390d5a041c425998234510e9f468ef
- Author
- Journal series
- Comptes Rendus Mathematique, ISSN 1631-073X
- Issue year
- 2003
- Vol
- 337
- No
- 9
- Pages
- 575-580
- ASJC Classification
- DOI
- DOI:10.1016/j.crma.2003.09.019 Opening in a new tab
- URL
- https://www.sciencedirect.com/science/article/pii/S1631073X03004291 Opening in a new tab
- Language
- (en) English
- File
-
- File: 1
- 1-s2.0-S1631073X03004291-main.pdf
-
- Score (nominal)
- 0
- Score source
- journalList
- Publication indicators
- = 1; = 1; : 2003 = 0.881; : 2006 (2 years) = 0.443 - 2007 (5 years) =0.462
- Uniform Resource Identifier
- https://researchportal.amu.edu.pl/info/article/UAM14390d5a041c425998234510e9f468ef/
- URN
urn:amu-prod:UAM14390d5a041c425998234510e9f468ef
* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or PerishOpening in a new tab system.