Synthetic magnetic fluxes and topological order in one-dimensional spin systems
Authors:
- Tobias Graß,
- Christine Muschik,
- Alessio Celi,
- Ravindra Witold Chhajlany,
- Maciej Lewenstein
Abstract
Engineering topological quantum order has become a major field of physics. Many advances have been made by synthesizing gauge fields in cold atomic systems. Here we carry over these developments to other platforms which are extremely well suited for quantum engineering, namely, trapped ions and nano-trapped atoms. Since these systems are typically one-dimensional, the action of artificial magnetic fields has so far received little attention. However, exploiting the long-range nature of interactions, loops with nonvanishing magnetic fluxes become possible even in one-dimensional settings. This gives rise to intriguing phenomena, such as fractal energy spectra, flat bands with localized edge states, and topological many-body states. We elaborate on a simple scheme for generating the required artificial fluxes by periodically driving an XY spin chain. Concrete estimates demonstrating the experimental feasibility for trapped ions and atoms in wave guides are given.
- Record ID
- UAM5f3b0d94cb2f41e0b0cd02b3a5d04de9
- Author
- Journal series
- Physical Review A, ISSN 1050-2947
- Issue year
- 2015
- Vol
- 91
- ASJC Classification
- DOI
- DOI:10.1103/PhysRevA.91.063612 Opening in a new tab
- Language
- (en) English
- Score (nominal)
- 35
- Score source
- journalList
- Score
- Publication indicators
- = 25; = 28; : 2015 = 1.008; : 2014 (2 years) = 2.808 - 2014 (5 years) =2.628
- Uniform Resource Identifier
- https://researchportal.amu.edu.pl/info/article/UAM5f3b0d94cb2f41e0b0cd02b3a5d04de9/
- URN
urn:amu-prod:UAM5f3b0d94cb2f41e0b0cd02b3a5d04de9
* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or PerishOpening in a new tab system.