Operator Spaces Containing c0 OR l∞
Authors:
- J. Bonet,
- Paweł Jan Domański,
- M. Lindström,
- M.S. Ramanujan
Abstract
Let E, F be either Fréchet or complete DF-spaces and let A(E, F) ⊆ B(E, F) be spaces of operators. Under some quite general assumptions we show that: (i) A(E, F) contains a copy of c0 if and only if it contains a copy of l∞; (ii) if c0 ⊆ A(E, F), then A(E, F) is complemented in B(E, F) if and only if A(E, F) = B(E, F); (iii) if E or F has an unconditional basis and A(E, F) ≠ L(E, F), then A(E, F) ⊇ c0. The above results cover cases of many clssical operator spaces A. We show also that EεF contains l∞ if and only if E or F contains l∞. © 1995, Birkhäuser Verlag, Basel. All rights reserved.
- Record ID
- UAM805e824c4e224f3eae307e4050d80623
- Author
- Journal series
- Results in Mathematics, ISSN 1422-6383
- Issue year
- 1995
- Vol
- 28
- Pages
- 250-269
- ASJC Classification
- ;
- DOI
- DOI:10.1007/BF03322256 Opening in a new tab
- Language
- (en) English
- Score (nominal)
- 0
- Score source
- journalList
- Publication indicators
- = 6; : 2007 = 0.510; : 2009 (2 years) = 0.513 - 2012 (5 years) =0.544
- Uniform Resource Identifier
- https://researchportal.amu.edu.pl/info/article/UAM805e824c4e224f3eae307e4050d80623/
- URN
urn:amu-prod:UAM805e824c4e224f3eae307e4050d80623
* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or PerishOpening in a new tab system.